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1 Introduction
The Basics
A disjoint-set or union-find data structure is a method to keep track of a set

of items that belong to one or more non-overlapping (i.e. disjoint) sets.

Java has no DisjointSet interface, but if it did, it would probably look like

this, with two methods:

public interface DisjointSet<E> {

void connect(E a, E b)

boolean isConnected(E a, E b)

}

Disjoint sets could be used, for example, to keep track of connectedness in

a social network. Imagine starting out with a set of people, {Michael, Will,

Max, Thong, Sruthi, Sean}. They all do not know each other, so they are

each in their own disjoint set: {Michael}, {Will}, {Max}, {Thong}, {Sruthi},
{Sean}.

We write a class that implements the DisjointSet interface for People objects.

First, we want to model that Michael meets Sruthi, Thong meets Will, and

Thong meets Max. The new disjoint set data structure would represent the

sets {Michael, Sruthi}, {Thong, Will, Max}, {Sean}. Each person appears

exactly once! The sequence of function calls that would represent these

meetings would be the following:

connect(Michael, Sruthi)

connect(Thong, Will)

connect(Thong, Max)

Connecting two items means merging the set that the first item belongs to

with the set the second item belongs to. We can see what is going on in our

data structure using isConnected:

isConnected(Sruthi, Michael) // This is true

isConnected(Will, Max) // This is true

isConnected(Michael, Will) // This is false

Then, if Will meets Sruthi, the final data structure would represent the sets

{Michael, Sruthi, Thong, Will, Max}, {Sean}.
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connect(Will, Sruthi) // This represents Sruthi and Will meeting

isConnected(Michael, Will) // Now this is true

For simplicity, in this worksheet we will only be looking at disjoint sets where

the items in question are integers, e.g. a set of integers something like {0, 1,

2, 3, 4, 5, 6}, that belong to perhaps three disjoint sets: {0, 1, 2, 4}, {3, 5},
and {6}. Our interface would then just look like this:

public interface DisjointSet {

void connect(int a, int b)

boolean isConnected(int a, int b)

}

Notice that there is no delete method! Once you connect two sets, they can-

not be disconnected. Implementing efficient deletions into UnionFind data

structures is a question that has piqued the interest of a lot of important

computer scientists, and you can read more about it in the Appendix.

When are disjoint sets useful?
With slight modifications, the disjoint set data structure introduced above

can be used to find cycles in a graph. For a basic implementation of a findCy-

cle function, see the Appendix. Disjoint sets will also make a reappearance

in 61B when we learn about Kruskal’s algorithm.
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2 Quick Find and Quick Union
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id[] 0 0 0 3 0 3 6
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QuickFind looks for a way to improve the run time of checking whether

two items are connected, i.e. isConnected. Recall from lecture that a natural

choice for this improvement is to have an int[], where each index corresponds

to an item in our set, and the value for that index represents an ”id” of

the connected component this item is a part of. If an item of a connected

component joins a new set, every item in that connected component must

also be in the new set.

2.1 Fill out the following methods according to the given schema for QuickFind.

Every item should start off in its own connected component i.e. id[index] =

index.

public class QuickFindDS implements DisjointSets {

private int[] id;

public QuickFindDS(int N) {

}

public void connect(int p, int q) {

}

public boolean isConnected(int p, int q) {

}

}
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2.2 Given the example data and implementation from the previous page, answer

the following questions. Throughout these questions, assume connect(p, q)

will make item p become a child of item q.

(a) What are the sequence of connect calls that will generate the diagram and

its corresponding int array from the previous page? Can two different

orderings produce the same result?

(b) What will the resulting diagram and int[] id look like after calling

connect(2, 5)?

(c) What is the run time with respect to the number of items N of:

QuickFindDS: connect: isConnected:
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public QuickUnionDS(int N) {

parent = new int[N];

for (int i = 0; i < N; i++) {

parent[i] = i;

}

}

public int find(int p) {

while (p != parent[p])

p = parent[p];

return p;

}

Now let’s try to optimize the connect (or union) function, which is the focus

of QuickUnion. Recall that we change our set representation such that each

value at each index represents the parent of that item. The difference here

with this new system is that we no longer need to change every value of every

item in a connected component if one of them were to join a new connected

component. Rather, we only need to trace the items to their ”top level”

parent and replace one value with the other. In order to achieve this effect,

we have an additional helper method that will find the ”top level” parent of

a given item.

2.3 Implement the following methods according to this new schema for Quick-

Union. The constructor and find methods are provided to you to get you

started.

public class QuickUnionDS implements DisjointSets {

private int[] parent;

...

public void connect(int p, int q) {

}

public boolean isConnected(int p, int q) {

}

}
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2.4 Given the example data and implementation from the previous page, answer

the following questions. Throughout these questions, assume connect(p, q)

will make item p become a child of item q.

(a) What are the sequence of connect calls that will generate the diagram and

its corresponding int array from the previous page? Can two different

orderings produce the same result?

(b) What will the resulting diagram and int[] parent look like after calling

connect(5, 2)?

(c) Draw the following diagram resulting from this sequence of connect calls:

connect(6, 5) → connect(5, 4) → connect(4, 3) → connect(3, 2) →
connect(2, 1) → connect(1, 0)

(d) What is the run time with respect to the number of items N of:

find: connect: isConnected:
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3 Weighted Quick Union
As you may have noticed from Problems 2.4(c) and 2.4(d) of the previous

section, our runtime isn’t exactly the most efficient it could be! In our

current implementation, something is happening that is a bottleneck and

slowing us down. What do you think that is? As a hint, our Quick Union is

represented as a tree, so what kinds of trees give us poor runtimes? Spindly

ones! Traversing a spindly tree from leaf to parent is the slowest possible

operation. Is there an operation that causes us to traverse from the leaf of

a tree to the parent? The find method! We start at a node and climb up

the tree until we reach the parent. Convince yourself that a spindly tree will

cause this process to be very slow. So, we will improve our data structure

by introducing the concept of weight or size.

The size of a disjoint set is defined as the number of elements it contains.

So, when we do a connect() operation, we will connect the root of the tree

with the smaller size to the larger one. This improves the runtimes of our

connect() and isConnected() operations to O(log(n)) time! To keep track

of the sizes of the trees, we will create a new array size[] where each root

index will contain the size of its tree. The Weighted Quick Union process is

exactly like the normal Quick Union process, except for this one extra step

that we take when connecting two roots. Even though it is a small change,

it has a huge impact on the runtime! An example is shown below:
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parent[] 0 0 0 0 2 5 5 6 parent[] 0 0 0 0 2 0 5 6

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

size[] 5 1 2 1 1 3 2 1 size[] 8 1 2 1 1 3 2 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
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3.1 Implement the following methods according to this new schema for Weighted

Quick-Union. Start with the constructor and implement find and connect.

public class WeightedQuickUnionUF implements DisjointSets {

public WeightedQuickUnionUF(int n) {

}

public int find(int p) {

}

public void connect(int p, int q) {

}

}
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3.2 Circle the letters corresponding to id[] arrays that cannot possibly occur

during the execution of the weighted quick union algorithm

(a) i: 0 1 2 3 4 5 6 7 8 9

-----------------------------

A. id[i]: 8 0 4 0 0 4 0 4 2 0

B. id[i]: 4 1 8 2 1 5 1 1 4 5

C. id[i]: 3 3 6 9 3 6 3 4 1 9

D. id[i]: 2 1 1 1 1 1 1 2 1 7

(b) i: 0 1 2 3 4 5 6 7 8 9

-----------------------------

A. id[i]: 0 1 2 1 1 8 6 7 8 9

B. id[i]: 4 4 1 0 8 0 0 4 6 4

C. id[i]: 9 9 3 0 0 2 8 6 8 9

D. id[i]: 5 5 5 9 5 9 8 2 9 9

3.3 Draw the resulting weighted quick union tree and write the resulting id[]

after the calls to connected.

id[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

connect(3,4)

connect(4,9)

connect(8,0)

connect(2,3)

connect(5,6)

connect(5,9)

connect(7,3)

connect(4,8)

connect(6,1)
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4 Path Compression
The key to this next improvement on Weight Quick Union is to realize that

once we call union on two objects, we will never un-union them. Thus there

is no need to keep our trees bushy - we only need to keep track of each item’s

parent, not the path of unions to that parent. With path compression,

we modify the tree by attaching each item directly as a child of its parent,

creating a tree that only has 2 levels: the identifier for a set (parent) and all

of the other items in that set (children).

1

2 3

4

5 6

union
1

2 3 4 5 6

Path compression is implemented in find and is done by setting the node’s

parent to its root. This means that only calls to find and calls to functions

that itself call find will utilize path compression. Below we define the find

and union pseudo code for WQU with Path Compression. Notice that only

find has changed. π(x) signifies the parent of node x. It does not mean the

root of the tree. Rank refers to the height of the tree as seen in Problem 3.3.

/* returns the root of x and performs path compression */

function find(x):

if x != π(x): // if self is not parent

π(x) = find(π(x)) // set parent to root of parent

return π(x) // return parent

/* unions x and y and performs path compression on x and y through find */

function union(x, y):

rx = find(x) // finds the root of x

ry = find(y) // finds the root of y

if rx == ry: // if already unioned, return

return

else if rank(rx) > rank(ry): // if rx higher rank, then set ry as child of rx

π(ry) = rx

else: // if ry higher rank, then set rx as child of ry

π(rx) = ry

if rank(rx) == rank(ry): // if equal rank, set as child of ry and increase rank of ry

rank(ry) += 1

The runtime of performing a union-find operations on n items is O(log∗(n)),

which for all practical purposes is constant (because log∗ grows so slowly

with n).
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4.1 Given the disjoint set to the right, run the following union and find com-

mands. Draw what the sets would look like after each command. Break ties

by choosing the node with the lower number.

(a) find(4)

(b) union(4, 8)

(c) find(7)

(d) Suppose we started with all nodes disconnected (each in a separate set).

Is our initial configuration as defined above possible by using WQU with

Path Compression? If so, list in order the operations required. If not,

explain why.
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5 Path Compression Runtime
Note: The following problems regarding the amortized analysis of Path Com-

pression are out of scope for CS 61B and would be considered a difficult CS

170 level problem. However the math is not very complex, and with enough

effort, definitely possible for a 61B student.

The runtime for WQU with Path Compression can be analyzed with an

amortization analogy or with a mathematical functioned called Inverse Ack-

erman function. Here we will be looking at the first method by prov-

ing smaller aspects of the amortization and building towards the complete

proof.

5.1 What Did the Drowning Computer Scientist Say?

Answer: loglogloglogloglog...

Iterated logarithm, denoted log∗, is the number of times you need to apply

log(n) to some number n, n ≥ 0 until the result is 1. It can be recursively

defined as

log∗(n) =

0 if n ≤ 1

1 + log∗(log(n)) otherwise

(a) Intuitively argue as to why log∗(n) is essentially constant for all practical

values of n.

(b) Suppose you are given n balls, each numbered from 1 to n consecutively.

You wish to separate these balls into bins such that bin contains the balls

numbered from k + 1 to 2k, where k is a power of 2. For example, for

n = 265535 = 22
16

,

{1}, {2}, {3, 4}, {5, 6, 7, ..., 24}, {17, 18, ..., 216}, {216 + 1, 216 + 2, ..., 22
16}

How many bins must you have to separate these n balls?

Hint: Apply log∗ to the bounds of each bin.
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(c) Prove that
α∑
i=1

n

2k+i
≤ n

2k
∀α ∈ N

5.2 Universal Bin-sic Income

These following properties hold true for Weighted Quick Union with and

without Path Compression. You do not need to memorize it for CS 61B, but

may find it useful to try to prove them to better understand WQU.

1. Given n items, the maximum rank is log(n).

2. For any non root item x, rank(x) < rank(π(x))

3. Any root node of rank k has at least 2k nodes in its tree.

4. If there are n elements overall, there can be at most n = 2k nodes of

rank k.

(a) Using the solution from Problem 5.1c and the given properties, prove

that there must be less than n
2k

items of rank > k.

(b) Each item xi has a rank ri. Recall the bins scenario in Problem 5.1b.

Let the range of all possible nonzero ri, from 1 to log n, be put into the

bins. We assign some amount of money to each of the n items in this

fashion: if an item xi has rank ri where ri belongs to the bin

{k + 1, k + 2, ..., 2k}

then we give that item 2k dollars. Show that no more than n log∗ n

dollars is given out.
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(c) There are two kinds of items xi. Let a node be ”good” if the rank of xi’s

parent π(xi) is in a higher bin than the rank of xi is in. That means if

xi has rank k + 1, then its parent has rank at least 2k + 1.

Now consider all the the nodes that are not ”good”. Explain why the

maximum number of operations required until xi’s parent will be in a

higher bin is O(2k).

(d) Does each node have enough money to turn itself into a ”good” node?

What is an upper bound on the total amount of money that could be

spend turning every node into a good node?

(e) If xi and all of xi’s parents themselves are ”good”, then we say that xi’s

path is partially compressed. Prove that if xi is partially compressed,

then it takes at most O(log∗ n) operations to run find(x). For example,

if A’s parent is B whose parent is C and A, B, C are all in different bins,

then running find(A)will take no more than O(log∗ n) operations.
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5.3 Explanation of Results

The work you did in these previous problems was underlying math behind

a complex analogy for amortization. By giving out n log∗ n dollars, you can

show that performing n − 1 unions and some m finds, m > n, will run in

O(m log∗ n). This theorem is as stated:

Theorem. Starting from an empty data structure, weighted quick union

with path compression performs any intermixed sequence of m ≥ n FIND

and n− 1 UNION operations in O(mlog∗n) time.

Below, we will finish the proof of this theorem. A node xi can be sepa-

rated into 3 cases:

1. xi is a root, and xi = π(xi). Finding the parent thus is constant.

2. The rank of xi’s parent π(xi) is in a higher bin than that of xi.

3. The rank of xi’s parent π(xi) is in the same bin as the rank of xi.

The basic strategy here is to show that (1) it will take at most n log∗ n work

to get all nodes to be a Case 2 node. Then from there we can (2) show that

path compression for a Case 2 node takes at most log∗ n work.

When we path compress, we want to remove all intermediate parents of

xi and set xi’s immediate parent to the root. To turn all nodes from Case

3 to Case 2, we only need to particularly compress the path just enough

so that every node on that path is in a different bin. What this means is

that for every node xi , we only want to compress xi so that xi’s immediate

parent’s is in a higher rank bin. This involves changing the pointer of xi’s

immediate parent at most 2k times, where k is the rank of xi. This is proven

in Problem 5.2d and this operation costs 2k dollars for xi.

Each node is given a certain amount of money and is only responsible for

using that money to get its parent into the next bin. That is, each node

needs to have enough money to turn itself from a Case 3 into a Case 2. This

is why we only have to worry about xi getting its immediate parent pi into

the next bin. The node pi can then use its money to get its immediate parent

into the next higher bin. Thus because each node starts with 2k dollars and

it will cost at most 2k dollars to move its parent up a bin, we can show that

each node has enough money to become a Case 2. We know from Problem

5.2b that the total amount of money given out is n log∗ n, and we proved

in problem 3d that this is enough money to partially compress every node.

This (1) that it takes O(n log∗ n) to make every node a Case 2.
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Now assume that a node xi has all of its intermediate parent in consecu-

tively higher bins. Then to path compress this into just one parent, there

need be at most O(log∗ n) operations because there cannot be more than

log∗ n parents (the number of bins, one per parent). This proves (2) and the

O(log∗ n) operations upper bound is proven in Problem 5.2c.

Thus a FIND operation will take θ(1) time if the path is already compressed

and O(log∗ n) time if the path is particularly compressed. To get all nodes

into that second state, it takes at most n − 1 UNION operations at a cost

of O(n log∗ n), which is the total amount of money given out to every node.

The total runtime for m > n FIND operations provided n − 1 UNION op-

erations is O(cost of partial compression + m ∗ max cost of each find) =

O(n log∗ n + m ∗ log∗ n) = O(m log∗ n). Amortized, this is O(log∗ n) per

operation which we showed in Problem 5.1a to be for all practical purposes

constant.
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